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Analytical studies on the size effects of a simply-shaped beam fixed at both ends have successfully

explained the sudden changes of effective Young’s modulus as its diameter decreases below

100 nm. Yet they are invalid for complex nanostructures ubiquitously existing in nature. In

accordance with a generalized Young-Laplace equation, one of the representative size effects is

transferred to non-uniformly distributed pressure against an external surface due to the imbalance

of inward and outward loads. Because the magnitude of pressure depends on the principal curva-

tures, iterative steps have to be adopted to gradually stabilize the structure in finite element analy-

sis. Computational results are in good agreement with both experiment data and theoretical

prediction. Furthermore, the investigation on strengthened and softened Young’s modulus for two

complex nanostructures demonstrates that the proposed computational method provides a general

and effective approach to analyze the size effects for nanostructures in arbitrary shape. VC 2015
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4935819]

I. INTRODUCTION

When the size of a structure approaches the nanoscale,

its mechanical properties such as Young’s modulus and

strength could significantly increase.1–6 For instance, both

theoretical analysis and experimental measurements have

verified that carbon nanotubes possess amazing specific

strength (strength-to-weight ratio) amounting to 48 000 kN

m/kg, a 200-fold increase in comparison with carbon steel in

macro size.7,8 Such size-dependent effects have received

increasing attention as they might have promising applica-

tions in lightweight structure, high strength material, cataly-

sis, sensing, and actuating.9–11

The enhancement in mechanical properties is mainly

attributed to the strong interactions of molecules and their

clusters on the material surface when the ratio of surface

area to volume becomes extremely large in reduced dimen-

sionality.1,12,13 With the assumption that surface layers can

be superposed and inner substances possess the same elastic

properties as bulk material, several analytical methods have

been established to quantitatively explain the size effects for

nanostructures in terms of Gurtin’s surface elasticity

theory.14 The first of such methods is based on a core-shell

structure to account for a hardened external surface and has

been successfully utilized to explain the dramatic rise of

Young’s modulus for ZnO nanowire in experiments.15,16 By

employing surface stress and surface elasticity, the sliver

nanowire is considered as a composite composed of an inner

bulk kernel and a bounding skin under the framework of

classical continuum theory, which reasonably explains the

remarkable increase of Young’s modulus with respect to the

decrease of the diameter of a nanowire.14 Later, a model

integrating both the generalized Young-Laplace equation

and surface elasticity theories was proposed to essentially

predict the softening or stiffening effects on the mechanical

properties for nanostructures.17 Integrated with simple beam

theories, this method offers an adequate platform to deter-

mine the effective Young’s modulus for nano beams.10,18,19

Though these analytical methods enable the size-dependent

properties to be calculated by some explicit formula, they

are only applicable to fairly simple structures such as simply

supported beams with regular cross section and orthogonal

frames. Moreover, the strict restrictions on the boundary

conditions and external loadings preclude their applications

to complex nanostructures, which are ubiquitous in real

scenarios.

An alternative approach to compensating for the insuffi-

ciencies of analytical methods is classical molecular dynam-

ics simulation.20–22 This method offers insights into the

exceptional performance of nanomaterials at atomic scope

and therefore has been widely used to study surface effects.

As it necessitates knowing the motions of each individual

particle and their interactions, molecular dynamics simula-

tions are only applicable to ultra-small and highly simplified

geometrical models. For a common structure at tens of nano-

meters in size, molecular dynamics simulation is infeasible

as the computational cost would be astronomical due to the

enormous constituting particles (e.g., 60 � 106 for a 100 nm

gold cubic).23 To avoid such a prohibitive computational

cost, finite element method based approaches are often

used.24 In this method, a two-node surface element is devel-

oped to illustrate the strong size dependence of Young’s

modulus for a 2D structure subjected to pressure in its cav-

ity.25 To simulate a nanowire beam under large deformation,
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a finite element using an absolute nodal coordinate formula-

tion algorithm26 is employed to account for the strengthening

and softening effects.17,27 To tackle the discontinuities across

the interface of two solids for the general deformation in 3D,

the level set method28 and the extended finite element

method29 are integrated.4,30

This paper will transfer one of the representative surface

effects into non-uniform pressure against the external surface

of a complex structure based on the generalized Young-

Laplace equation. It will be applicable to the evaluation of

the size effects for the nanostructures in any arbitrary shape,

which has not been resolved to the best of our knowledge.

Considering the fact that these advanced structures can be

prototyped by modern nanofabrication technology precisely

and efficiently,31 the work in this field is promising.

The rest of this paper is structured as follows. Firstly the

generalized Young-Laplace equation and surface elasticity

theory used to describe the size effects at nanoscale is intro-

duced. Then shape-dependent pressure is applied to the sur-

face in order to transfer the size effects into the finite

element model. Numerical implementation for a benchmark

beam fixed at both ends is elaborated thereafter. Then the

influence of surface stiffness and initial surface tension on

the effective Young’s modulus is discussed. To further dem-

onstrate the capacity of the proposed method, the size effects

of two complex structures at nanometer scale are investi-

gated. One is featured with ultra-light and ultra-stiff proper-

ties32 while the other is produced from structural topology

optimization33 for the sake of obtaining maximal stiffness.

II. GENERALIZED YOUNG-LAPLACE EQUATION

According to the surface elasticity theory,14 the surface

stress rs
ab, a symmetric 2� 2 tensor in tangent plane, is given

as

rs
ab ¼

@G es
ab

� �

@es
ab

þ s0dab a; b ¼ 1; 2; 3ð Þ; (1)

where es
ab is surface strain tensor, Gðes

abÞ is surface energy in

the global coordinate system, and dab is the Kronecker delta.

The initial surface tension is represented by s0. Under the

assumption that the surface is homogeneous, isotropic, and

linearly elastic, the overall surface stress tensor can be

expressed as

rs
ab ¼ s0 þ Ese

s
ab; (2)

where Es is the effective surface stiffness. In accordance

with Eq. (2), the stress tensor rs in the tangent plane of a

surface can be determined as long as the strain is given.

Attributed to the size effects, the stress becomes discontinu-

ous at the surface in the normal direction n. It is mathemati-

cally expressed as

½ro � ri� � n ¼ �rsr
s; (3)

where ro and ri represent the stress tensor in the inner side

and outer side of an interface, respectively. The surface

divergence of a surface stress tensor is denoted as rsr
s. This

formula is the well-known generalized Young-Laplace equa-

tion originally used for a fluidic problem.14 When employed

to explain size effects, it gives the fundamental description

of the discontinuity of stress tensor across the curved inter-

face surfaces.

For a representative infinitesimal surface element OABC
(Fig. 1(a)) defined on a curvilinear coordinate system

Ox1x2x3 (O is the origin while x1, x2, and x3 are the coordi-

nate axes, and h1, h2, h3 represent curvilinear orthonormal

basis vectors), the generalized Young-Laplace equation is

substituted into a scalar form along the normal direction of

the interface,34 given as

ro
33 � ri

33 ¼ ðrs
11j1 þ rs

22j2Þ; (4)

where ro
33 and ri

33 are the stresses along the outward and

inward normal directions of the infinitesimal surface ele-

ment, respectively. The principal stresses along the edges

(OA and OC) and that with an increment of @rs
11/@x1dx1 and

@rs
22/@x2dx2 along the edges (BC and AB) of the tangent

plane are illustrated in Fig. 1(a). Note that the shear stress

components are neglected in Eq. (4) for simplification. This

equation clearly indicates that the stress discontinuity is the

linear combination of the principal stresses and curvature in

the local curvilinear coordinate system. Accordingly, the

principal curvatures j1 and j2 of the surface element are

given as

j1 ¼
1

h1

@h1

@x3

; j2 ¼
1

h2

@h2

@x3

: (5)

The stress disparities between the inner and outer surfa-

ces are equivalent to surface loads in the normal direction as

shown in Fig. 1(b) with red arrows. Fig. 1(c) is a close-up of

a load profile for a representative cross section (cut by the

black plane in Fig. 1(b)) at the middle of the beam. If these

loads are integrated along the boundaries of such a cross sec-

tion, they are transferred into the non-uniformly distributed

pressure against the external surface. For a circular beam

without deflection, the line integral equals zero as the princi-

pal curvatures at any pair of symmetrical points have the

same magnitude but opposite signs (green arrows in Fig.

1(c)). In other words, the size effect induced loads could be

cancelled out if the cross section of a beam is rotational sym-

metry. However, one side of the beam would become convex

(concave) if small perturbations are introduced. As a result,

the load balance of opposite points on the surface will break,

and centripetal or centrifugal loads would occur as shown by

the red arrows in Fig. 1(c). The imbalance of surface loads,

together with the initial stress s0 and the effective surface

stiffness Es, could make the beam stiffer or softer. Such hard-

ening and softening phenomena are the main reasons of size

effects and will be numerically investigated for the Young’s

modulus hereafter.

III. COMPUTATIONAL IMPLEMENTATION

The generalized Young-Laplace equation is well under-

stood and has become the cornerstone for a series of analyti-

cal models. But many complex structures featured with
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randomly shaped architectures and unusual loading condi-

tions still require an effective method to determine their size

effects. We can, however, use finite element analysis to

obtain the effective Young’s modulus for these structures. A

benchmark of a beam which is fixed at both ends and sub-

jected to a point load at its center is studied first to validate

the proposed scheme. The diameter and length of the beam

are represented as D and L, respectively (Fig. 2). In terms of

Eq. (4), initially there is no surface pressure as the principal

curvatures are totally canceled out.

To trigger surface pressure, a concentrated load F is

applied downward at the beam center to actuate small but

significant initial deflection. Such deformation leads to dis-

tributed pressure which bends the beam inversely, sometimes

even pushing it upward. In the new configuration, the princi-

pal curvatures update the pressure and therefore the just

achieved balance is broken. The beam vibrates in such a

manner with decreasing amplitude and eventually achieves

the final equilibrium state. To be more specific, the iterative

process is illustrated in Fig. 2. First, finite element analysis is

conducted to simulate the beam deforming from state 1

(grey) to state 2 (cyan) due to load F. Then the principal cur-

vatures of the beam surface at state 2 are calculated to

determine the curvature-dependent distributed surface load

(blue arrows). Together with load F, this pressure continu-

ously deforms the beam into state 3 (magenta). As a result of

further deformation, the surface pressure changes both in

magnitude and direction and therefore breaks the balance

obtained in the previous step, causing the beam to be trans-

ferred to state 4 (green). Because the deflection in the current

stage will always be weakened in the next step, the deflection

fluctuation attenuates and eventually reaches the balance

state (yellow).

A typical convergence process for beams with different

diameters is shown in Fig. 3, in which the y-axis denotes the

ratio of deflection at the middle point to the beam length

while the x-axis gives the iteration step. This figure clearly

illustrates that the thinner the beam, the slower it converges.

For instance, it takes around 25 steps for D¼ 20 nm to con-

verge while only 5 steps for D¼ 50 nm. Moreover, the initial

amplitudes of the thinner beam are remarkably larger than

the thicker ones, consistent with the common sense that size

effects are more significant at a smaller scale. Specifically,

we find that the fluctuation fails to converge for a beam with

D< 3 nm even though hundreds of iteration steps are

attempted. The reason for this failure is attributed to the fact

FIG. 1. (a) The schematic of an infinitesimal surface element under stresses caused by size effects; (b) the size-effect-induced pressure along the external sur-

face of a deformed beam; (c) the load profile for a representative cross section at the middle of beam (cut by black plane in Fig. 1(b)).

FIG. 2. The iterative simulation pro-

cess to capture the size-effect-induced

pressure for a beam fixed at both ends

under concentrated load F at the beam

centre.
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that the surface pressure is extremely large for thin beams,

resulting in a non-feasible solution due to the fracture of a

beam.

The effective Young’s modulus for this simply sup-

ported beam undergoing deflection � can be obtained in

accordance with classic Euler-Bernoulli beam theory,35

given as

vmax ¼
FL3

192E�I
; (6)

where vmax is the maximal deflection for the same beam sub-

jected to identical loads and supports and I¼ pD4/64 repre-

sents the second moment of inertia of a circular cross

section. Because the biggest deflection is around 0.1094D or

0.0055L in the iteration, it is reasonable to use the assump-

tion of small deformation and neglect the axial stress alone

the longitudinal direction.35 Therefore, the effective Young’s

modulus E* of the simulated beam can be determined as

E� ¼ FL3

192vmaxI
: (7)

The blue curve in Fig. 4 is the interpolated effective

Young’s modulus E* (denoted by the magenta square

markers) for a beam with fixed D:L¼ 1:20. It clearly demon-

strates the surge of E* as the characteristic size approaches

50 nm. Similar trajectories have been reported in tests, in

which a silver nanowire is suspended over a dent and its two

ends are tightly clamped onto the substrate. The experimen-

tal data36,37 are represented as red stars and red circular

markers (the error bars stand for the acceptable error mar-

gins), respectively, in Fig. 4. It is interesting to note, for the

similar simply supported beams under the same boundary

conditions, the blue curve matches with the experimental

data (red stars) reasonably well, especially for a thinner

beam with D< 50 nm. Moreover, the numerical results are

within the error margins for two tests (black circles) with

D¼ 60 nm and D¼ 79 nm. Though having the same surface

parameters, theoretical prediction17 represented by the cyan

curve with circular marks is, however, notably larger than

both the computational results and experimental data. When

the beam becomes thicker, the results from computational

simulation still perform better than the analytical model

although both of them deviate from experimental data.

To demonstrate the superiority of this computational

method to theoretic analysis, a complex architecture (yellow

parts in Fig. 5(a)) claimed to have ultra large stiffness32 was

simulated herein. This structure is inscribed in a cube with a

width of W and all struts have the same circular cross section

with diameter D. Though the length of some struts are differ-

ent, the ratio of its diameter to the width of a cube is fixed to

D:W¼ 1:25. Because the complexity of this structure, an

explicit solution based on theoretical analysis17–19 might not

exist. Therefore we have to resort to a computational method

for such an irregular structure. Due to structural symmetry, a

simple uniaxial pressure test is capable of determining the

effective Young’s modulus by imposing downward deflec-

tion which is equivalent to a strain e¼ 0.1 (the deformed

structure is depicted by silver color in Fig. 5(a)). With the

rational assumption that all bilateral faces have undergone

in-plane deformation when the structures are periodically

repeated in space, the effective Young’s modulus can be

determined as

E� ¼ r=e; (8)

where the stress r¼F/A is equal to the reaction force F di-

vided by the area A of the inscribed cube.

For several representative values of surface stiffness Es

and initial surface tension s0, the effective Young’s modulus

E* of this complex structure is plotted in Fig. 5(b). It is evi-

dent that the proposed scheme captures the experimentally

observed rising Young’s modulus as the diameter is smaller

than 10 nm (which is equivalent to a cell with a width of

250 nm). This figure also reveals that the role of surface stiff-

ness is insignificant as a large variation of Es from 8.7 N/m

to 50 N/m merely leads to a marginal difference (shown as

the nearly overlapped green and blue lines in the inset).

However, the effective Young’s modulus is quite sensitive to

the change of initial surface tension as shown by the red,

pink, and blue curves in Fig. 5(b). A similar finding that E*

FIG. 3. The magnitude of normalized deflection at the middle point of a

beam fixed at both ends versus iteration step.

FIG. 4. The effective Young’s modulus from an analytical model,17 experi-

mental data,36,37 and computational results.
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is proportional to s0 has been reported previously via an ana-

lytical model.10 Because this lattice structure is stretch domi-

nant, its stiffness is much larger than the bending dominant

beams in Fig. 4. Therefore it can resist the size-effect-

induced pressure more effectively. As a result, the increase

of effective Young’s modulus is comparably smaller than

that in the previous example. Moreover, this structure is

likely to alleviate size effects as the critical diameter for the

surge of Es is as small as D< 10 nm.

To further test this computational method, it is used

to retrieve the effective Young’s modulus for a cantilever

(Fig. 6(a)) which is designed to have the maximal stiffness

using structural topology optimization.33 The ration of height

(H), length (L), and width (W) of this beam is L:H:W¼ 6:3:1

and the real dimensions are multiplied by 20b (b is a scale

factor with the unit of nm). A unit load F is applied at the

bottom-left end while the right surface is fixed. Within the

linear elastic assumption, the maximal deflection is inversely

proportional to the effective Young’s modulus.35 Therefore

the effective Young’s modulus E* could be obtained as

E� ¼ v0max

vmax

E0; (9)

where vmax and v0max denote the maximal deflection with

and without the consideration of size effects, and E0 is the

Young’s modulus of the bulk material. Several computa-

tional tests are conducted with different combinations of sur-

face stiffness Es and initial surface tension s0, all showing a

remarkable softening effect as the scale factor b< 10 nm in

Fig. 6(b). A similar softening effect for a cantilever beam

with a circular cross section has been found by He et al.17

The weakened Young’s modulus is mainly attributed to the

convex shape of the deformed cantilever, which results in a

downward pressure. This additional pressure bends the beam

with the same direction as the external force F. Thus the

deflections are superimposed other than partially offset in

previous examples. For this complex cantilever, it is found

that both initial surface tension s0 and surface stiffness Es are

appropriate to the softened Young’s modulus. However, s0

plays a more important role than Es as a moderate increase

s0 (from s0¼ 0.89 N/m to s0¼ 5.8 N/m) distinctly changes

E* from the red curve to the green curve, while a consider-

able rise of Es (from Es¼ 8.7 N/m to Es¼ 50 N/m) only

slightly changes E* as shown in the green curve and blue

curve in Fig. 6(b).

IV. CONCLUSIONS

In this study, we have proposed a recursive computa-

tional method to determine the size effects for nanostructures

by integrating finite element analysis with a generalized

Young-Laplace equation. One of the representative surface

effects is transferred into non-uniformly distributed pressure

against the external surface of nanostructures according to

Gurtin’s surface elasticity theory. Computational results

illustrate that this method can well capture the experimen-

tally observed strengthening and softening effects when the

characteristic size approaches tens of nanometers. More

importantly, the computational method enables the investiga-

tion of size effects for complex structures, which are beyond

the capability of conventional analytical methods. The first

example of a complex structure also reveals the critical size

FIG. 5. (a) A complex cubic structure

of width W subjected to vertical com-

pression and (b) its effective Young’s

modulus versus strut diameter D.

FIG. 6. (a) A complex cantilever with

maximal stiffness using structural to-

pology optimization; (b) the effective

Young’s modulus E* as a function of

scale factor b.
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below which the size effects become notable is 20 nm, much

smaller than 50 nm of beams with both ends fixed.

Parametric studies on the initial surface tension and surface

stiffness show that the former is a predominant factor. The

weakened Young’s modulus is found in a complex cantilever

which is produced from structural topology optimization.

This computational method also indicates the potential of

introducing structural topology optimization into a nano-

structure design as two illustrating examples clearly show

that size effects are highly dependent on the structural shape

and topology at nanoscale.
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